2019 ANNUAL DRINKING WATER QUALITY REPORT CITY OF HARTFORD, ALABAMA

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies.

Hartford has three well sources pumping out of the Libson Aquifer. Well #1 is located on North Second Avenue, Well #2 is located on Avenue F and Well #3 is located on East State Highway 52. The water we provide to our customers requires no specialized treatment. However, chlorine is added for disinfection purposes. We test for disinfection byproducts in your water, such as trihalomethanes and haloacetic acids. Disinfection byproducts are contaminants that develop when chlorine breaks down over an extended period of time. All test results were well within state and federal standards.

Unit Description	s						
Term		Definition					
ppm		ppm: parts per million, or milligrams per liter (mg/L)					
ppb		ppb: parts per billion, or micrograms per liter (μ g/L)					
pCi/L		pCi/L: picocuries per liter (a measure of radioactivity)					
NTU		NTU: Nephelometric Turbidity Units. Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system.					
NA		NA: not applicable					
ND		ND: Not detected					
Important Drink	ing Wa	ater Definitions					
Term		Definition					
MCLG	MCL	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.					
MCL		MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking ater. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.					
TT	TT: Tr	Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.					
AL	AL: A	L: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.					
Variances and Exemptions	Var	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.					
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.						
MRDL		MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.					
MNR		MNR: Monitored Not Regulated					
MPL	MPL: State Assigned Maximum Permissible Level						

In the tables below you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions for you.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. Based on a study conducted by the Department with the approval of the EPA a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for any of these contaminants was not required. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the

taste of drinking water and have nutritional value at low levels. The tables below show the results of our monitoring for the period of January 1 - December 31, 2019. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old.

CONTAMINANT	MCL	TEST RESULTS	CONTAMINANT	MCL	TEST RESULTS
Bacteriological					
Total Coliform Bacteria	<5%	ND	1,2-Dichlorobenzene	600 ppb	ND
Turbidity	TT	.21	1,4-Dichlorobenzene	75 ppb	ND
Fecal Coliform and E. coli	0	0	1,2-Dichloroethane	5 ppb	ND
Fecal Indicators (enterococci or Coliphage)	TT	ND	1,1-Dichloroethene	7 ppb	ND
Radiological			Cis-1,2-Dichloroethene	70 ppb	ND
Beta/Photon Emitters	4	ND	Trans-1,2-Dichloroethene	100 ppb	ND
Alpha Emitters (pCi/l)	15	0.8+/-0.9	Dichloromethane	5 ppb	ND
Combined Radium (pCi/l)	5	1.0+/-0.5	1,2-Dichloropropane	5 ppb	ND
Inorganic Chemicals			Di (2-ethylhexyl)adipate	400 ppb	ND
Antimony	6 ppb	ND	Di (2-ethylhexyl)phthalates	6 ppb	ND
Arsenic	10 ppb	ND	Dinoseb	7 ppb	ND
Asbestos	7	ND	Dioxin	30 ppq	ND
Barium	2 ppm	ND	Diquat	20 ppb	ND
Beryllium	4 ppb	ND	Endothall	100 ppb	ND
Bromate	10 ppb	ND	Endrin	2 ppb	ND
Cadmium	5 ppb	ND	Epichlorohydrin	TT	ND
Chloramines	4 ppb	ND	Ethylbenzene	700 ppb	ND
Chlorine	4 ppm	ND	Ethylene Dibromide	50 ppt	ND
Chlorine Dioxide	800 ppb	ND	Glyphosate	700 ppb	ND
Chlorite	1 ppm	ND	HAA5 (haloacetic acids 5)	60 ppb	.0012
Chromium	100ppb	ND	Heptachlor	400 ppt	ND
Copper	AL=1.3ppm	.130	Heptachlor epoxide	200 ppt	ND
Cyanide	200 ppb	ND	Hexachlorobenzene	1 ppb	ND
Fluoride	4 ppb	ND	Hexachlorocyclopentadiene	50 ppb	ND
Lead	AL=15ppb	.009	Lindane	200ppt	ND
Mercury	2 ppb	ND	Methoxychlor	40 ppb	ND
Nickel	100 ppb	ND	Methylene Chloride	5ppb	ND
Nitrate (2015)	10 ppm	.49 – 2.8	Oxamyl (Vydate)	200 ppb	ND
Nitrite	1 ppm	ND	Pentachlorophenol	1 ppb	ND
Selenium	50 ppb	ND	Picloram	500 ppb	ND
Sulfate	500 ppm	3.16-20.3	Polychlorinated Biphenyls	500 ppt	ND
Thallium	2 ppb	ND	Simazine	4 ppb	ND
Organic Chemicals			Styrene	100 ppb	ND
Acrylamide	TT	ND	Tetrachloroethene	5 ppb	ND
Alachlor	2 ppb	ND	Toluene	1 ppm	ND
Atrazine	3 ppb	ND	TOC (Total Organic Carbon)	TT	ND
Benzene	5 ppb	ND	TTHMs (Total Trihalomethanes)	80 ppb	.0041
Benzo(a)pyrene (PAHs)	200 ppt	ND	Toxaphene	3 ppb	ND
Carbofuran	40 ppb	ND	2,4,5-TP (Silvex)	50 ppb	ND
Carbon Tetrachloride	5 ppb	ND	1,2,4-Trichlorobenzene	70 ppb	ND
Chlordane	2 ppb	ND	1,1,1-Trichloroethane	200 ppb	ND
Chlorobenzene	100 ppb	ND	1,1,2-Trichloroethane	5 ppb	ND
2,4-D	70 ppb	ND	Trichloroethene	5 ppb	ND
Dalapon	200 ppb	ND	Vinyl Chloride	2 ppb	ND
Dibromochloropropane	200 ppt	ND	Xylenes	10 ppm	ND

PRIMARY DRINKING WATER CONTAMINANTS

Unregulated contaminants have no MCL set by the EPA or ADEM but are tested for in your drinking water. These contaminants pose many of the same health risk as the regulated contaminants but their presence in most drinking water is not frequent enough to warrant regulation. Unregulated contaminants are tested for to provide historical data on components presence in drinking water over time.

CONTAMINANT	MCL	DETECT	CONTAMINANT	MCL	DETECT
Synthetic Organic Contaminants			2-Chlorotoluene	NA	ND
Aldicarb	NA	ND	4-Chlorotoluene	NA	ND
Aldicarb Sulfone	NA	ND	Dibromochloromethane	NA	.0011
Aldicarb Sulfoxide	NA	ND	Dibromoacetic Acid	NA	.0012
Aldrin	NA	ND	1,3-Dichlorobenzene	NA	ND
Butachlor	NA	ND	1,1-Dichloroethane	NA	ND
Carbaryl	NA	ND	Dichlorodifluoromethane	NA	ND
Dicamba	NA	ND	1,3-Dichloropropane	NA	ND
Dieldrin	NA	ND	2,2-Dichloropropane	NA	ND
3-Hydroxycarbofuran	NA	ND	1,1-Dichloropropene	NA	ND
Methomyl	NA	ND	1,3-Dichloropropene	NA	ND
Metolachlor	NA	ND	Fluorotrichloromethane	NA	ND
Metribuzin	NA	ND	Hexachlorobutadiene	NA	ND
Propachlor	NA	ND	Isopropylbenzene	NA	ND
Volatile Organic Contaminants			4-Isopropyltoluene	NA	ND
Bromobenzene	NA	ND	Methyl Tertiary Butyl Ether	NA	ND
Bromochloromethane	NA	ND	Naphthalene	NA	ND
Bromodichloromethane	NA	.0015	n-Propylbenzene	NA	ND
Bromoform	NA	ND	1,1,2,2-Tetrachloroethane	NA	ND
Bromomethane	NA	ND	Trichloroethene	NA	.00062
n-Butylbenzene	NA	ND	1,2,3-Trichlorobenzene	NA	ND
sec-Butylbenzene	NA	ND	1,2,4-Trichlorobenzene	NA	ND
tert-Butylbenzene	NA	ND	1,2,3-Trichloropropane	NA	ND
Chlorodibromomethane	NA	ND	1,2,4-Trimethylbenzene	NA	ND
Chloroethane	NA	ND	1,3,5-Trimethylbenzene	NA	ND
Chloroform	NA	.0015	Trichlorofluoromethane	NA	ND
Chloromethane	NA	ND		NA	ND

TABLE OF UNREGULATED CONTAMINANTS

TABLE OF SECONDARY CONTAMINANTS

CONTAMINANT	MCL	DETECT	CONTAMINANT	MCL	DETECT
Inorganic Chemical			Magnesium	NA	4.78-6.38
Alkalinity	NA	94.1-109	Manganese	500 ppb	ND
Aluminum	20ppb	ND	Odor	3 ppm	ND
Calcium	NA	34.9-49.5	рН	NA	7.8-8.14
Carbon Dioxide	NA	2.24-3.24	Silver	100 ppb	ND
Chloride	250ppm	4.38-17.4	Sodium	NA	3.99-5.45
Color	15	5	Specific Conductance	NA	238-328
MBAS	500ppb	ND	Total Dissolved Solids	500 ppm	48-140
Hardness Calcium/Magnesium	NA	110-150	Zinc	5 ppm	ND
Iron	300 ppb	ND	Turbidity	NA	.1021

All drinking water, including bottled drinking water, may reasonably be expected to contain at least small amounts of some contaminants. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water hotline at 800-426-4791.

TABLE OF DETECTED CONTAMINANTS

	MCLG	MCL,	-					
	or TT, or		Range		Sample			
Contaminants	MRDLG	MRDL	Low	High	Date	Violation	Typical Source	
Inorganic Contaminants	Г Г		[[]		[
Copper - action level at consumer taps (ppm)	1.3	1.3	ND	0.128	2017	No	Corrosion of household plumbing systems; Erosion of natural deposits	
Lead – action level at consumer taps (ppb)	15	15	ND	.009	2017	No	Corrosion of household plumbing systems	
Nitrate [measured as Nitrogen] (ppm)	10	10	.49	2.8	2019	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	
Sulfate (ppm)	NA	500	3.10	20.3	2019	No	Naturally occurring in the environment	
Microbiological Contam	inants							
Turbidity (NTU)	NA	5	.10	.21	2019	No	Soil runoff	
Radioactive Contaminar	nts							
Alpha emitters (pCi/L)	0	15	.03+/04	.8+/9	2019	No	Erosion of natural deposits	
Radium (combined 226/228) (pCi/L)	0	5	.1+/-0.4	1.0+/-1.5	2019	No	Erosion of natural deposits	
Organic Contaminants								
Trichloroethene (ppb)	0	5	ND	.0015	2019	No	Result of industrial discharge	
Haloacetic Acids (HAA5)	0	0.06	ND	.0012	2019	No	By-product of drinking water chlorination	
Total Trihalomethanes (TTHM)	0	0.08	ND	.0041	2019	No	By-product of drinking water chlorination	
Unregulated Volatile Or	ganic Con	taminants	5					
Bromodichloromethane	NA	NA	ND	.0015	2019	No	By-product of chlorination	
Chloroform	NA	NA	ND	.0015	2019	No	By-product of chlorination	
Dibromoacetic Acid	NA	NA	ND	.0012	2019	No	By-product of chlorination	
Dibromochloromethane	NA	NA	ND	.0011	2019	No	By-product of chlorination	
Secondary Inorganic Cor	ntaminant	s						
Alkalinity	NA	NA	94.1	109	2019	No	Erosion of natural deposits	
Calcium	NA	NA	34.9	49.5	2019	No	Erosion of natural deposits	
Chloride (ppm)	NA	250	4.38	17.4	2019	No	Naturally occurring in the environment or as a result of agricultural runoff	
Color	NA	15	5	5	2019	No	Naturally occurring in the environment	
Hardness Calcium/Magnesium	NA	NA	110	150	2019	No	Naturally occurring in the environment or as a result of treatment with water additives	
Langelier Index	NA	NA	-0.07	+0.40	2019	No	Naturally occurring in the environment or as a result of treatment with water additives	
Magnesium	NA	NA	4.78	6.38	2019	No	Erosion of natural deposits	
рН	NA	NA	7.8	8.14	2019	No	Naturally occurring in the environment or as a result of treatment with water additives	
Sodium	NA	NA	3.99	5.45	2019	No	Naturally occurring in the environment	
Specific Conductance	NA	NA	238	328	2019	No	Naturally occurring in the environment or as a result of treatment with water additives	
Total Dissolved Solids (ppm)	NA	500	48	140	2019	No	Erosion of natural deposits	

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Hartford is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Hartford has a "Source Water Assessment Plan" that provides information such as potential sources of contamination. The plan is available for review at the City Hall, 203 West Main Street, Hartford, AL.

Source Water Protection Tips

Protection of drinking water is everyone's responsibility. You can help protect your community's drinking water source in several ways:

- Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching to water sources or consider connecting to a public water system.
- Dispose of chemicals properly; take used motor oil to a recycling center

We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the first and third Monday of each month. Meetings are held at 6:00 p.m. in the conference room at Hartford City Hall, 203 West Main Street, Hartford, AL.

Mayor and Council Members						
Wendel Nolen, Mayor	Bobby Burks	Paul Fondren				
Ken Hales	Jo Ann Lindsey	Eria Sorrells				

If you have any questions about this report or concerning your water utility, please contact Vicky Marsh at (334)588-2245.